§ 23.427 only on airplane configurations with aft-mounted, horizontal surfaces, unless its use elsewhere is shown to be conservative: $$\Delta L_{ht} = \frac{K_g U_{de} V a_{ht} S_{ht}}{498} \left(1 - \frac{d\varepsilon}{d\alpha} \right)$$ where- $\begin{array}{lll} \Delta L_{ht} = Incremental \ horizontal \ tailload \ (lbs.); \\ K_g = Gust \ alleviation \ factor \ defined \ in \\ \S 23.341; \end{array}$ $U_{de} = Derived gust velocity (f.p.s.);$ V = Airplane equivalent speed (knots); a_{ht} = Slope of aft horizontal lift curve (per ra- S_{ht} = Area of aft horizontal lift surface (ft²); $$\left(1 - \frac{d\varepsilon}{d\alpha}\right)$$ = Downwash factor [Doc. No. 4080, 29 FR 17955, Dec. 18, 1964, as amended by Amdt. 23–7, 34 FR 13089 Aug. 13, 1969; Amdt. 23–42, 56 FR 353, Jan. 3, 1991] ## §23.427 Unsymmetrical loads. - (a) Horizontal surfaces other than main wing and their supporting structure must be designed for unsymmetrical loads arising from yawing and slipstream effects, in combination with the loads prescribed for the flight conditions set forth in §§ 23.421 through 23.425. - (b) In the absence of more rational data for airplanes that are conventional in regard to location of engines, wings, horizontal surfaces other than main wing, and fuselage shape: - (1) 100 percent of the maximum loading from the symmetrical flight conditions may be assumed on the surface on one side of the plane of symmetry; and - (2) The following percentage of that loading must be applied to the opposite side: Percent = 100 - 10 (n - 1), where n is the specified positive maneuvering load factor, but this value may not be more than 80 percent. (c) For airplanes that are not conventional (such as airplanes with hori- zontal surfaces other than main wing having appreciable dihedral or supported by the vertical tail surfaces) the surfaces and supporting structures must be designed for combined vertical and horizontal surface loads resulting from each prescribed flight condition taken separately. [Amdt. 23–14, 38 FR 31820, Nov. 19, 1973, as amended by Amdt. 23–42, 56 FR 353, Jan. 3, 1991] ## VERTICAL SURFACES ## §23.441 Maneuvering loads. - (a) At speeds up to V_A , the vertical surfaces must be designed to withstand the following conditions. In computing the loads, the yawing velocity may be assumed to be zero: - (1) With the airplane in unaccelerated flight at zero yaw, it is assumed that the rudder control is suddenly displaced to the maximum deflection, as limited by the control stops or by limit pilot forces. - (2) With the rudder deflected as specified in paragraph (a)(1) of this section, it is assumed that the airplane yaws to the overswing sideslip angle. In lieu of a rational analysis, an overswing angle equal to 1.5 times the static sideslip angle of paragraph (a)(3) of this section may be assumed. - (3) A yaw angle of 15 degrees with the rudder control maintained in the neutral position (except as limited by pilot strength). - (b) For commuter category airplanes, the loads imposed by the following additional maneuver must be substantiated at speeds from V_A to V_D/M_D . When computing the tail loads— - (1) The airplane must be yawed to the largest attainable steady state sideslip angle, with the rudder at maximum deflection caused by any one of the following: - (i) Control surface stops; - (ii) Maximum available booster effort: - (iii) Maximum pilot rudder force as shown below: